MESOZOIC INSECTS OF QUEENSLAND.

No. 9. Orthoptera, and Additions to the Protorthoptera, Odonata, Hemiptera and Planipennia.

By R. J. Tillyard, M.A., Sc.D. (Cantab.), D.Sc. (Sydney), C.M.Z.S., F.L.S., F.E.S., Entomologist and Chief of the Biological Department, Cawthron Institute, Nelson, N.Z.
(Plates li.-liii.; Text-figs. 72-89.)
[Read 25th October, 1922.]
The present paper completes the study of the Ipswich Upper Triassic fossils sent to me by Mr. B. Dunstan, Chief Government Geologist of Queensland, with the sole exception of the Coleoptera, which Mr. Dunstan bimself is dealing with. In it no less than twenty species are dealt with, of which sixteen are described as new, while ten new genera are proposed for their reception. The species dealt with belong to the Orders Protorthoptera, Orthoptera, Odonata, Hemiptera (both Homoptera and Heteroptera) and Neuroptera Planipennia. A number of the fossils are shown enlarged on Plates li.-liii., which have been reproduced from photographs taken by Mr. W. C. Davies, Curator of the Cawthron Institute, to whom my best thanks are due. I also desire to thank Mr. F. Muir, the well known Homopterist of Honolulu, for valuable criticisms of my former publications on fossil Homoptera, as a result of which I have attempted some regrouping of the families represented in the Upper Trias.

Order PROTORTHOPTERA.

Family MESORTHOPTERIDAE.

Mesorthopteron locustoides, Tillyard, Mesozoic and Tertiary Insects of Queensland and N.S.W., Queensland Geol. Survey, Publ. No. 253, 1916, p. 14, Plate 2, figs. 3-6.

The types of this species are Specimens No. $5 a$ and $5 b$ in the Queensland Geol. Survey Collection at Brisbane. The fragment $5 c$, though originally figured (l.c., Plate 1, fig. 4) as belonging to this species, can now be proved not to belong to it at all. The wing shown on Plate 1, fig. 5 of the same paper (Specimen No. 4), which was originally indicated as doubtfully belonging to this species, has now been shown, by further study and comparison with other fossils, to be the somewhat badly preserved tegmen of a Homopteron, Mesocixiodes brachyclada, n.sp., described in this paper.

Since the type was described, a number of fragments of this species have been discovered at Ipswich, together with one more complete specimen showing
a large portion of the wing. Taken together, they enable us to complete the restoration of the wing, the only parts not found upon one or other of the fragments being a portion of the distal area below the apex, together with the apical border itself, part of the distal branching of the cubitus, and the actual outline of the anal border. A study of all the specimens discovered shows that the original interpretation of the venation given by me was incorrect. A new definition of the family and genus is here given:-

Family Mesorthopteridae: Large Protorthopterous insects having rather long wings, well rounded at the apex, and carrying numerous main veins separated everywhere by a complete archedictyon or original meshwork of irregular polygonal cellules, as shown in Plate li., fig. 26. Costal space with many oblique veinlets. Se a strongly formed vein. R strongly formed, with the origin of Rs placed far from base. M a weak vein fused with R basally and diverging only slightly from it. Cu a very strongly formed vein, giving off a series of numerous anterior branches. Anal area rather narrow.

Genus Mesorthopteron Till. (Plate li., fig. 26; Text-fig. 72.)
Large insects having the forewing somewhat longer and narrower than the hind. Se long, reaching to about one-fifth from apex, and with the subcostal veinlets evenly spaced and mostly unbranched. R_{1} branching apically so as to fill the space between end of Sc and apex of wing. Rs with few branches, all running to margin around apex. M_{1+2} with few branches, M_{3+4} a weak furrow vein without any branches at all. Main stem of Cu_{1} giving off anteriorly a series of about six anterior branches, very regularly arranged, most of which fork dichotomically before reaching the margin; the branches of this vein supply a space reaching from just below the apex right round to half-way along the posterior margin. Cu_{2} a weak, straight, furrow vein, ending up somewhat before half-way along the posterior margin. Apparently only two anal veins, the first running parallel to Cu_{2} just below it, and probably branched distally, the second somewhat curved, with a number of descending branchlets. In the costal and anal areas the archedictyon is much denser than on the rest of the wing, being formed of a very large number of very irregular cellules; in the rest of the wing, it consists chiefly of two rows of polygonal cells lying between each consecutive pair of longitudinal veins.

Genotype, Mesorthopteron locustoides Till.
The genus remains monotypie, and can be recognised at once by the extraordinary manner of branching of Cu_{1}, which, as far as I know, is unique within the Class Insecta. Small fragments of the wings of this insect are frequently met with at Ipswich, and can always be recognised by the very characteristic archedictyon.

Mesorthopteron locustoides Till. (Plate li., fig. 26; Text-fig. 72.)
The restoration of this fine wing, given in Text-fig. 72, is based chiefly upon Specimen No. 258b, a large fragment of a forewing, showing almost the whole of the costal margin (except the apical and basal portions), and portions of all the veins down to within a short distance of the posterior margin; the latter, together with the anal area, is absent. Total length of fragment, 22.5 mm ., from which the measurements of the complete forewing may be estimated to be about 35 mm . long by 15 mm . wide.

The other fragments studied in making the restoration were the following:Specimen No. $72 a-b$: a small piece, showing portion of the anal veins and Cu_{2}.

Specimen No. 75: a fragment showing hasal portions of $\mathrm{Cux}_{1} \mathrm{Cu}_{2}$ and nearly all the anal veins.

Specimen No. $78\left(1-b\right.$: portions of Cu_{1} and Cu2, showing branches of the former.

Text-fig. 72. - Mesorthopteron locustoides Till. Restoration of forewing, with archedictyon omitted (see Plate li., fig. 26.) (x 4).

Specimen No. 123: anal veins, basal part of Cuz and portion of branches of Cu_{1}.

Specimen No. 224: two tragments on one small piece of rock; one shows a piece of Sc with costal area, the other portions of the branches of Cu_{1}.

Specimen No. 234: ends of Se and R, with hranches around apex.
Specimen No. 241b: Sc and the costal area practically complete from base to near apex, also distal portion of R.

Type, Specimens No. $5 a, 5 b$, in Coll. Quecnsland Geol. Survey, Brishane. Heautotypes used in restoring the wing are the specimens mentioned above.

This insect is clearly an archaic type persisting from the Upper Carboniferous Protorthoptera, and appears to bave its nearest relatives in the Prototettigidae of the Middle Upper Carboniferous of Saarbrücken.

Specimens No. 100 and $162 a$ are fragments of Protorthopterous wings not belonging to the genus Mesorthopteron, and distinguisbed from it by the fainter and more regular archedictyon and the very strong veins. They probably belong to the genus Notoblattites Till.. but there is not enough of the wing preserved to allow of a definite placing and naming of the specimens.

Order ORTHOPTERA.

Family TRIASSOMANTIDAE, n.fam.
Insects of rather small size, in which the forewing is of the general plan shown in recent Mantidae, but with the venation of a more archaic type. Sc short, ending up little beyond half-way along the costa, and thus leaving a long pterostigmatic area between itself and $\mathrm{R}_{\mathbf{1}}$. Rs arising nearer to base than in any known Mantoid types, and dividing dichotomically into two parallel branches. M a single vein to beyond middle of wing, dividing into two main branches beyond the level of the end of Sc. (Clavus and most of Cu missing).

This family appears to come fairly close to the Liassic Geinitziidae of Europe, hut is more archaic in possessing a much longer Rs, which is dicho-
tomically forked. The small hark-haunting Perlamantinae, well represented in Australia to-day, are perhaps the direct descendants of this family.

Genus Triassomantis, n.g. (Plate li., fig. 27; Text-fig. 73.)
Characters as given for the family, with the following additions:-Costal and pterostigmatic veinlets, and all series of cross-veins, fairly abundant, oblique and parallel to one another. Se and R_{1} both turn fairly sharply npwards to end on the costal margin. $\mathrm{R}_{2_{+}}$runs quite straight to a point a little above the apex, and gives off a strong anterior distal branch (R_{2}) below the end of R_{1}, together with a set of shorter distal hranchlets anteriorly at the end of R_{3}. R_{4+5} also runs quite straight below and parallel to $R_{2_{+3}}$, and gives off R_{4} as a close parallel branch above R_{5}; the latter continues the line of R_{4+5} and ends up at the apex of the wing, which is well rounded. M slightly earved downwards near middle of wing; both its main branches give off somewhat irregular posterior branches with small terminal forks. Part of Cu_{1} preserved distally as a straight vein having a small terminal fork.

Genotype, Triassomantis pygmaeus, n.sp. (Upper Triassic, Ipswich, Q.).
Triassomantis pygmaeds, n.sp. (Plate li., fig. 27; Text-fig. 73.)
This species is represented by a rather faint impression of a left forewing, complete except for the loss of the clavus and most of the cubitus. Total length,

Text-fig. 73.-Triassomantis pygmaeus, n.g. et sp. Restoration of forewing with apex to right (see tlate li., fig. 27.) (x 11).
Text-fig. 74. - Triassolocusta leploptera, n.g. et sp. Restoration of forewing (see Plate li., fig. 28.) (x 5.4).

10 mm . Greatest breadth, 2.8 mm . The costal veinlets are numerons and more closely spaced than the cross-veins in the rest of the wing. The elongated pterostigma carries eleven veinlets spaced about the same distanco apart as the cross-
veins in the radial and median areas below them. The number and position of the terminal branches of Rs and M may also be considered as specific characters; R_{3} has four closely placed anterior branchlets, while $\mathrm{M}_{1_{+2}}$ and $\mathrm{M}_{3_{+4}}$ both run straight to the wing margin, giving off only posterior branches as shown in Textfig. 73. $\mathrm{M}_{1_{+}}$converges towards R_{5} from helow.

Type, Specimen No. 86a, in Coll. Geol. Survey, Brisbane.
Horizon, Upper Triassic, Ipswich, Q.
The size of this wing appears to indicate a small insect, not unlike the present day Perlamantinae, and possibly of somewhat similar habits. The restoration of the missing parts of the wing, in Text-fig. 73, is made on the supposition that the missing portion of the venation was on the Perlamantine plan.

Family LOCUSTOPSIDAE.

This family was formed by Handlirsch to include a number of Liassic and Upper Jurassic Locustoid insects allied to the Elcanidae, but differing from them in having M branched instead of simple, Sc much longer, and Cu not fused basally with M. The fossil from the Upper Trias of Ipswich, which I here place under this family, agrees with the Locustopsidae in all characters except only the short Se, a character which I do not consider of sufficient importance to justify the making of a new family to contain it. The definition of the family Locustopsidae will therefore need emending as regards the length of Sc, which may be either short or long. These insects appear to have been slender, voiceless Locustoids, having very long and slender antennae, and with the long, slender hind-legs not armed with spines.

Geuus Triassolocusta, n.g. (Plate li., fig. 28; Text-fig. 74.)
Insects of moderate size, with forewing very long and narrow. Sc ending up before half-way along costal margin, and provided with a shorter anterior branch. Rs arising somewhat hefore half-way along the wing, with four distinct and well-spaced branches arranged in pectinate series. M branching into three near level of origin of Rs; the most posterior of these three branches, M_{3+4}, forks again distally. First fork of Cu placed well away from base, at about onefourth of the wing-length. Cu_{1} arching somewhat flatly upwards, connected with M above by an oblique vein (M5), and forked distally. Cu_{2} short, straight, ending up very close to $\mathrm{Cu}_{1 \mathrm{~b}}$. (Clavus missing).

Genotype, Triassolocusta leptoptera, n.sp. (Upper Triassic, Ipswich).
Triassolocusta leptoptera, n.sp. (Plate li., fig. 28; Text-fig. 74.)
Total length, 21 mm ., greatest breadth (at ahout one-fifth from apex), $\frac{4}{4}$ mm . The specimen is a very clear impression of a right forewing, complete except for the loss of the very narrow clavus and slight damage to the basal portion of the costal margin. Veinlets and cross-veins are only faintly preserved, and are mostly omitted from Text-fig. 74. Sc gives off an anterior branch Sc_{1}, quite close to the base; this branch has about four faint oblique cross-veins below it, and is separated from the end of the main stem of Sc by two oblique veinlets. From a little before the level of the end of Sc, R begins to give off anterior veinlets running very obliquely to the costal margin. There are three of these, the last being at the level of the origin of Rs. Next comes a fairly long anterior branch, running at a very slight angle to R_{1} itself, and carrying on it four or five shorter anterior veinlets. Beyond this branch lies a series of pterostigmatic veinlets, eight in number, less obliquely placed. R_{1} itself ends
up not much before the apex of the wing. Rs has, besides the series of four pectinate branches already mentioned in the generic defimition, a set of four terminal twigs arranged as shown in Text-fig. 74; the branch next below these ends exactly at the apex of the wing. The cross-venation in the spaces between the branches of Rs and M distally is a fine polygonal meshwork, two cells thick within each successive space, the borders of the cells making a slightly irregular line, dividing each space longitudinally abont midway. Portions of these are indicated by dotted lines in Text-fig. 74.

Type, Specimen No. 99, in Coll. Queensland Geol. Survey.
Horizon, Upper Triassic, Ipswich, Q.
In Text-fig. 74, the clavus has been restored on the lines shown in the genus Locustopsis Handl., with only two anal veins.

Order ODONATA.

Suborder Archizygoptera.

Family MESOPHLEBIIDAE.

Further study of the genus Mesophlebia (Tillyard, 1916, p. 24) has convinced me that it does not belong to the Anisoptera, but to Handlirsch's Suborder Anisozygoptcra, to which also most of the known Liassic Dragonflies belong. It seems best to treat it for the present as representative of a new family Mesophlebiidae, which shows some affinity with the Liassic Heterophlebiidae. The exact relationships of the new family cannot be aceurately determined until the basal half of the wing is discovered.

Mesophlebia antinodalis Till. (Plate lii., fig. 30; Text-fig. 75.)
Tillyard, Mesozoic and Tertiary Insects of Queensland and New South Wales, Qld. Gcol. Survey; Publ. No. 253, 1916, p. 24.

Specimen 127 a represents a fairly well preserved portion of a right forewing of this species, comprising the whole of the costal margin from somewhat before the nodus to a little beyond the pterostigma, and including the subnodus and all branches of M except M_{4}, of which only a very small portion is preserved. The nodus is incomplete basally by the loss of the costal margin, though Sc is complete. The pterostigma is complete and remarkably well preserved.

Total length of fragment, 28 mm . Distance from nodus to beginning of pterostigma, 12 mm . Length of pterostigma, 3.6 mm . The approximate total length of the wing must have been about 40 mm . By comparison with the type specimen, the present wing is found to be somewhat narrower in comparison with its length, and may therefore be considered as a forewing, the type specimen representing a hindwing. The pterostigma, however, is longer than in the type (3.6 mm . as against 2.8 mm .) which is a somewhat anomalous condition. Number of postnodals five, as in type. Pterostigma slightly wider basally than distally: slightly shorter along costa than along R , and strongly thickened along R. No hrace-vein below pterostigma. A strong, oblique subnodus between R and M_{1+2}, strutted below, between $\mathrm{M}_{\mathrm{I}_{+2}}$ and Ms , by a much longer oblique cross-vein running in the opposite direction, at right angles to subnodus. M_{1} eurving upwards so as to come to lie close under pterostigma, as in the type. Structure of $\mathrm{M}_{1 \mathrm{~A}}$ and M_{2} very closely similar to type, but the broadened space between M_{1} and $\mathrm{M}_{1 A}$ below distal half of pterostigma carried definitely two rows of cellules. A weak obligue vein indicated between M_{2} and Ms , far from level of nodus, and a similar but longer obligue vein below it, between Ms and M_{3}.

Distad from level of nodus, $\mathbf{M}_{\mathbf{4}}$ arches rather sharply downwards away from M_{3}, as also in type.

The differences to be noted between the new specimen and the type consist in the presence of a definite subnodus normally placed, the absence of the weak pterostigmatic brace-vein shown in the type, the longer pterostigma, and the double row of cellules distally below the pterostigma. As the type was not very well preserved in places, it is possible that these differences may not really have been as great as they appear, e.g., the apparent brace-vein in the type may be only very slightly different from the normal cross-vein of the present specimen,

Text-fig. 75.-Mesophlebia antinodalis Till. Heautotype. (see Plate lii., fig. 30.) (x 3.5). Convex veins marked + , concave veins -.
Text-fig. 76.-Triasso力hlebia stigmatica, n.g. et sp. Fragment of wing. (x 5). Convex veins marked + , concave veins -.
while the subnodus may be present in the type, but indistinct, and the same may be true of the double row of cellales below the pterostigma. I have therefore decided not to give the new fossil a separate specific name, but to include it in the species M. antinodalis Till,, allowing a certain amount of variability in the length of the pterostigma in this species, and in one or two other characters. It is a great pity that this second fossil shows practically the same portions of the wing preserved as in the type, while the important region of arculus and discoidal cell still remains undiscovered.

Type, Specimen No. 3a, and Type-Counterpart Spee. No. 3b. Heautotype, Specimen No. 127a. All in Coll. Queensland Geol. Survey, Brisbane.

Genus Triassophlebia, n.g. (Text-fig. 76.)

Pterostigma elongated, about twice as long as in Mesophlebia. Postnodals numerous and close together. M_{1} only slightly converging towards R beneath distal end of pterostigma. $\mathrm{M}_{1 \mathrm{~A}}$ and M_{2} very much as in Mesophlebia, but $\mathrm{M}_{1 A}$ definitely arising from M_{2}. Supplementary sectors present distally between M_{1} and $\mathrm{M}_{1} \mathrm{~A}$, also between $\mathrm{M}_{1 \mathrm{~A}}$ and M_{2}. Ms running very close below M_{2} at level of origin of $\mathrm{M}_{1 \mathrm{~A}}$, as in Mesophlebia, but no ohlique vein visible between M_{2} and Ms. Two rows of cellules present distally between M_{2} and Ms. M_{3} lies further away from Ms than in Mesophlebia, with two rows of cellules between them at the level of the origin of $M_{1 A}$, increasing to three and then to four rows distally. M_{4} not arching strongly downwards away from M_{3}. (Rest of wing not preserved).

Genotype, Triassophlebia stigmatica, n.sp. (Upper Triassic, Ipswiel, Q.).

This new genus may be placed provisionally within the Mesophlebiidae, pending the discovery of more complete material.

Triassophlebia stigmatica, n.sp. (Text-fig. 76.)
Total length of fragment, about 14 mm ., probably representing a total winglength of at least 40 mm . Number of postnodals preserved or partially preserved, eight, indicating a total of about twelve. Pterostigma covering about nine or ten cellules. R somewhat thickened below pterostigma, but not so strongly as in Mesophlebia antinodalis. $\mathrm{M}_{1 \mathrm{~A}}$ arises from M_{2} as a well defined vein, strongly convex, well before the level of the pterostigma, and continues strongly to below the middle of the latter, when it becomes slightly kinked in one or two places, as shown in Text-fig. 76. Supplementary sector above M_{14} preceded by three irregularly divided cellules; that below $M_{1 A}$ is a straight sector from its very beginning, preceded by a single row of cellules. M_{2} arising from M as a strongly diverging vein which almost at once approaches Ms very closely, being separated from it only by a single row of very narrow cellules; further distad, below the level of the pterostigma, these two veins diverge somewhat, and are separated by two rows of cellules. The portion of M_{3} preserved runs subparallel to Ms, and is separated from it mostly by two rows of cellules, increasing to three or four rows of smaller cellules distally. Only a small portion of M_{4} is preserved, diverging slightly from M_{3}, and separated from it by a single row of cellules.

Type, Specimen No. $82 a$ in Coll. Queensland Geological Survey, Brisbane. Horizon, Upper Triassic, Ipswich, Q.

Suborder Anisozygoptera.

Family TRIASSAGRIONIDAE, n.fam.

Se greatly shortened, ending up at less than one-fourth of the wing-length. Probably only two antenodals present. No definite nodus formed. Postnodals numerous. A true pterostigma present. Base of wing petiolate, very narrow. M fused with R basally, diverging very gently from it at the arculus, which is incomplete posteriorly. No true discoidal cell present. At the arculus M divides into M_{1-3} and M_{4}; the former is a strong concave vein, running below and sub-parallel to R_{1}, and giving off (a) the common stem of M_{3} and Ms , and (b) at about twice as far from the arculus, the stem of $\mathrm{M}_{2} . \mathrm{M}_{2}$ arises from M_{1} a little before half-way along the wing, arching strongly downwards, and
soon dividing into two strong branches, which diverge at a sharp angle; the upper branch, M_{2}, runs straight along the wing to end up just below the apex, close to $\mathrm{M}_{1} \mathrm{~A}$, which is a long sector formed between M_{1} and M_{2}; the lower branch, M_{2}, runs obliquely just above Ms. The common stem of Ms and M_{3} soon divides at a very acute angle into Ms, which runs straight on, obliquely across the wing, and M_{3}, which arches so as to end up about half-way along the posterior border, far from Ms , but very close to $\mathrm{M}_{4} . \mathrm{M}_{4}$ is a slightly arched, unbranched, convex vein, rather weakly formed distally. The cubitus is a simple, concave vein, corresponding with Cu_{1} of recent Odonata, slightly curved below the arculus, and then runniug almost straight on to end up at about the middle of the posterior border, a little before M_{4}. Anal crossing present as a weak cubito-anal veinlet, situated at the end of the petiole, and marking the origiu of 1 A from $\mathrm{Cu} ; 1 \mathrm{~A}$ itself runs between Cu and the posterior border, and ends up not far from Cu . Both Cu and 1 A become weak and somewhat zig-zagged distally.

Handlirsch formed the new Suborder Archizygoptera to include the single peculiar and highly problematical genus Protomyrmeleon Geinitz, represented by a single species, P. brunonis Geinitz, from the Upper Lias of Dobbertin in Mecklenburg. Tbis fossil was placed by him in the family Protomyrmeleontidae, the only family of the Suborder. The present fossil agrees with Protomyrmeleon in the very striking characters of the shortened Sc, unformed nodus, peculiar development of $\mathrm{M}_{1} \mathrm{~A}$, two-branched M_{2} and simple cubitus, but appears to differ in the bas not being petiolate, M arising separate from R, so that no arculus is formed, separation of the base of Ms from M_{3}, and entive absence of 1 A . (It should be noted that Handlirseh's naming of all the veins after M_{1} is iucorrect, his M_{2} being actually M_{14}; his Rs, $\mathrm{M}_{2_{a}}$; his $\mathrm{M}_{3}, \mathrm{M}_{2_{5}}$; his M_{4}, Ms ; and his $\mathrm{Cu}_{1}, \mathrm{Cu}_{2}$ and 1 A being $\mathrm{M}_{3}, \mathrm{M}_{4}$ and Cu respectively). It would appear highly probable that the true base of Protomyrmeleon has not been preserved, including the petiole (if present), the portion of M fused with R, and the true arculus. This misled Handlirsch in naming the veins. As drawn by him in Plate xlii., fig. 14 of his Atlas to "Die Fossilen Insekten," there is, in any case, no true 1A in this genus.

Genus Triassagrion, n.g. (Plate lii., fig. 31; Text-fig. 77.)
To the characters given for the family we may add the following for the genus:-Postnodals about twenty-four, the basal ones mostly continuous with the cross-veins below them, the distal ones not so. Pterostigma short, about twice as long as wide. $\mathrm{R}_{1}, \mathrm{M}_{1}, \mathrm{M}_{1 \mathrm{~A}}$ and $\mathrm{M}_{2_{a}}$ all ending up close together at or near apex of wing. $\mathrm{M}_{1 A}$ arises as a weak zig-zag vein from near base of M_{2}, and runs very close above M_{2} at first, but gradually diverges until, below the pterostigma, it runs as a straight vein about half-way between M_{1} and $\mathrm{M}_{2_{\mathrm{n}}}$. The wide triangular spaces between the two branches of M_{2} and also between $\mathrm{Ms}^{\text {s }}$ and M_{3} are filled with irregular cellules, without any supplements. Only one row of cellules between 1 A and the posterior border of the wing.

Genotype, Triassagrion australiense, n.sp. (Upper Triassic. Ipswich, Q.).

It is useless to try to compare this genus closely with any existing Zygoptera, owing to the great difference in the structure of the arculus, the entire absence of the discoidal cell, the primitive condition of Cu and 1 A , and the branched condition of M_{2}. I would, however, call attention to certain resemblances which it bears to the forewing of the genus Chorismagrion Morton. This latter genus, found in North Queensland at the present day, has the arculus open basally in
the forewing; Sc is very short; M_{1-3} gives off the common stem of M_{3} and Ms at the subnodus, and M_{2} far beyond it, with M_{14} forming a well developed vein between M_{1} and $M_{2} ; \mathrm{Cu}$, except for current usage, might well be interpreted as a simple vein, 1A arising separately out of the posterior margin just beyond the end of the petiole, and connected with Cu above it by the anal crossing. Again, if we look at the genus Hemiphlebia, which also has the arculus incomplete basally in the forewing, we see that the same interpretation of Cu and 1 A is the obvious one, and that 1 A actually arises from the cubito-anal veinlet as it does in Triassagrion, with a small cross-vein connecting it with the end of the petiole as in that genus. This latter character, being unique in present-day Zygoptera, is a very significant one. I therefore suggest the probability of our modern Zygoptera having arisen from some such form as Triassagrion by the following changes:-
(1) Formation of a complete nodus by strengthening of the subnodal crossveins between end of Sc and R, and between R and M_{1-3}.
(2) Formation of the strong distal side of the still open discoidal cell, by cbange of direction of the first cross-vein between M_{4} and Cu .
(3) A further bending of Cu below arculus, correlated with (2).
(4) Cross-vein situated below distal angle of discoidal cell becomes strong and oblique, and, in the nymphal wing, carries a trachea which captures 1 A and attaches it to Cu .
(5) Shortening and simplification of $\mathrm{M}_{1} \mathrm{~A}$.
(6) Reduction of M_{2} to a simple vein.
(7) Approximation of M_{3} towards Ms.

Definite proof of the origin of modern Zygoptera from such a type as Triassagrion cannot be given with the present state of our knowledge. It is more probable that a considerable number of archaic types ancestral to various groups of the true Zygoptera were already in existence in the Upper Trias. One, indeed, we already know in the genus Triassolestes, related to Epiophlebia. We can only add that the recent studies of Professor C. H. Kennedy on the penes of Zygoptera strongly indicate the probability of forms such as Hemiphlebia and the Megapodagrionidae being the oldest existing Zygoptera, and that this result, startling as it appears to be, would be quite in harmony with the evidence of our Upper Triassie fossils.

Triassagrionaustraliense, n.sp. (Plate lii., fig. 31; Text-fig. 77.)
An almost complete wing, probably a forewing. Total length, 21 mm ; Greatest breadth, 4.5 mm . The wing is the reverse of a left wing, as is shown by R_{1} being concave and M_{1} convex in the impression.

The wing is complete except for the following missing parts:-Portions of the costal area broken away $(a)^{\circ}$ before the end of Sc, (b) in two places hetween Sc and pterostigma, the second of these being a deep triangular break reaching across R_{1}, as shown in Plate lii., fig. 31, and (c) from pterostigma to near apex; in this last case, the two posterior angles of the pterostigma are visible, and also the whole of the straight and slightly thickened base along R_{1}, so that the stigma itself can easily be restored in its entirety. The hasal piece of Cu up to beginning of arculus is very faintly preserved, and bas been restored backwards to base, in Text-fig. 77, along the line faintly indicated in the fossil. The posterior margin of the petiole is absent, but a clear indication of the cubitoanal crossing and the beginning of 1 A below it can be seen; most of the course of 1 A is very faint indeed. Between the origins of M_{3} and M_{2}, the wing has hecome slightly buckled by lying above a hard, convex object, probably a fruit
or cone of some plant, and this has also caused the transverse tear, which can be seen across veins M_{4} and Cu_{1} in Plate lii., fig. 31, somewhat anterior to this point, and ${ }^{-}$is indicated by the dark sbadow. The distal halves of M_{4} and Cu_{1} are thus shifted upwards out of their proper levels, and at the same time

Text-fig. 77.-Triassagrion australiense, n.g. et sp.. Restoration of wing. (see Plate lii., fig. 31.) (x 6.3). Convex veins marked + , concave veins - .
it is probable that, by slight longitudinal rucking, the veins M_{3}, Ms and M_{2} have got pushed together more closely, near their origins, than would be the case if the wing were lying flat. The correct positions of these last three veins cannot be exactly restored; but, in the case of M_{4} and Cu , the former being convex and the latter concave, it is easy to pick up their broken courses, and to restore them as in Text-fig. 77.

Plate lii., fig. 31 shows this fossil wing with the light so arranged that the main veins are well shown up; consequently, the cross-veins are not well shown, being mostly at right angles to the main veins. Under a moderate power, however, every single cross-vein of this wing can be seen, though they are all of very fine calibre. The only parts which cannot be restored with absolute certainty are those where there has been a break or rucking. In this connection, I desire to emphasize the following points:-
(1) In the restoration, the origins and basal portions of $\mathrm{M}_{3}, \mathrm{Ms}$ and M_{2} are probably crowded a little too closely together, owing to the rucking already mentioned.
(2) It is not absolutely certain that there are only two antenodals; there may be another one closer to the distal end of Sc.
(3) Cu , being a concave vein, is raised up in this reverse impression, and its basal piece, within the petiole, has the actual impression of the vein removed, as often along a ridge; its course, however, seems fairly well indicated, and it is restored in its normal position for Zygoptera.
(4) The posterior border of the petiole is also missing. But the anal crossing, Ac, can be seen, with faint indications of the origin of 1A below it. The restoration is given in the only possible way in which these remnants can be made to fit into the wing-scheme, but must not be taken as being absolutely accurate.
(5) The breaks along the costa have been filled in by completing the series of postnodals, and by continuing the oblique sides of the pterostigma upwards from the preserved posterior portion along R_{1}. As this vein can be seen to be strongly thickened below the pterostigma, the assumption that the latter was well chitinised is, I think, justified.

The impertance of this wing in the study of Odonate phylogeny seems to me to he so great that it is essential that all doubtful points in the restoration of the wing should be fully emphasized.

Type, Specimen 290a (reverse), in Coll. Queensland Geol. Survey, Brisbane.

Horizon, Upper Triassic, Ipswich, Q.
Order HEMIPTERA.
Suborder Homoptera.
Since the publication of Nos. 7 and 8 of this series of papers, a considerable number of tegmina have been sent to me from the Ipswich fossil beds. It is now apparent that, next to the Coleoptera, the Homoptera were the dominant Order in the Upper Trias of Ipswich. We now know enough to attempt a review of the whole position of the Suborder at that period; the difficulty is not so much lack of knowledge of the Triassic forms, as the still fluctuating and uncertain schemes of classification of recent Auchenorrhyncha, particularly in the Superfamily Fulgoroidea. Mr. F. Muir, the well-known authority on these insects, has recently taken considcrable interest in the fossil diseoveries at Belmont and Ipswich; and he writes to me that, in his opinion, the Suborder Palaeohemiptera of Handlirseh does not exist, as the two genera still included in it (Prosbole Handl. and Mitchelloneura Till.) may reasonably be considered as arehaic Fulgoroids of the family Tropiduchidae, the connection being furnished by the evidence of the venation of the South American genus Alcestis. Accepting this view, it becomes evident at once that the tegmina placed in this paper under the genus Mesodiphthera are even more typically Tropiduchid than those already mentioned. I therefore have no hesitation in removing them from the Scytinopteridae and placing them in the Tropiduchidae. Mr. Muir is also of opinion that the forms placed by me in the subfamily Mesocixiinae of the Seytinopteridae are true Cixiidae, a conclusion which seems reasonable when we consider that this family stands morphologically at the very root of the Fulgoroidea. I shall therefore remove the genera Mesocixius Till., Triassocixius Till. and Mesocixiodes, n.g. to the family Cixiidae. The Ipsviciidae may also be considered to be a specialised family of Fulgoroidea, and are almost the only Triassic forms in which the evolution of the anal Y-vein on the clavus can be seen to have begun.

This leaves in the Scytinopteridae the Upper Triassic genera Mesoscytzna Till., Triassoscarta Till. and Chiliocycla Till. To these will be here added the two new genera Apheloscyta and Polycytella, the former allied to Scytinoptera Handl. and the latter to Chiliocycla. It is possible that the two genera Chiliocycla and Polycytella may prove to be Membracids of a primitive type; but until we can discover the clavus of Chiliocycla, so as to determine the course of 1A, it will be best to leave them in the Scytinopteridae.

The other families of Auchenorrhyncha represented in the Upper Triassic of Ipswich are the Mesogereonidae, ancestral to the Cicadidae, and the Cicadellidae or Jassidae. No further examples of these are dealt with in this paper.

Family SCYTINOPTERIDAE.

Genus Apheloscyta, n.g. (Plate liii., fig. 33; Text-fig. 78.)
Allied to Scytinoptera Handl. from the Upper Permian of Russia, but differing from it in having R s coming off from R quite close to the apex of the wing, whereas Rs arises about half-way along R in Scytinoptera. Vein M, which
is quite straight in Scytinoptera, is bent sharply into a very noticeable bay or hollow, concave to the costal margin, a little beyond the middle of the wing, in the new genus. Terminal branchings of M and Cu_{1} two each, connected by a single cross-vein much as in Scytinoptera, but $\mathrm{M}_{3_{+4}}$ and $\mathrm{Cu}_{1_{2}}$ lie closer together. Clarus (missing in Scytinoptera) of fairly typical Scytinopterid type, but 2A

Text-fig. 78.-Apheloscyta mesocampta, n.g. et sp. Tegmen. (see Plate liii., fig. 33.) (x 10.3).
Text-fig. 79.-Chiliocycla scolopoides Till. Restoration of tegmen from type and heantotype, with tuberenlation omitted. (x 11.7). (see Plate liii., fig. 37.)
lies very close to the basal posterior margin, and appears also to run close alongside the distal posterior margin of the clavus, thus showing a very early stage in the evolution of the true claval \bar{Y}-vein found in the Fulgoroidea. Shape of wing somewhat different from that of Scytinoptera, the costal area being about equally wide thronghout, and the apex much less broadly rounded.

Genotype, Apheloscyta, mesocampta, n.sp. (Upper Triassic, Ipswich).
Apheloscyta mesocampta, n.sp. (Plate liii., fig. 33: Text-fig. 78.)
Total length, $10 \mathrm{~mm} . ;$ greatest breadth, 3.5 mm .
A complete tegmen, except for slight damage at the base of the clavus and also at end of R_{1}; of tough consisteney, strongly granulated all over. All the main veins clearly marked, but the distal branchings somewhat fainter. The im-
pression is that of a left tegmen, of which both obverse and reverse are preserved; the latter is the better impression of the two.

Type, Specimen No. $98 a$ (reverse) in Coll. Queensland Geol. Survey, Brisbane.

Horizon, Upper Triassic, Ipswich, Q.
Genus Chiliocycla Till.
Tillyard, Proc. Linn. Soc. N.S.W., xliv., pt. 4, 1919 (1920), p. 868.
Genotype, Chiliocycla scolopoides Till. (l.c., p. 869).
Chiliocycla scolopoides Till. (Plate liii., fig. 37; Text-fig. 79.)
Specimen No. $327 a$ is a second example of this interesting tegmen, more complete basally than the type, but with the clavus missing, and the sculpture much more poorly preserved. Combining the two tegmina, it is possible to offer a reconstruction of the tegmen as shown in Text-fig. 79, the very strong sculpture of flat circular tubercles, covering all except the distal end of the tegmen, being omitted. The new specimen shows very clearly the excessively strongly built costal border basally, and the short Se connecting with it. The restoration of the clavus is purely provisional.

Types: Holotype, Specimen No. $158 a$; heautotype, Spec. No. $327 a$, in Coll. Queensland Geol. Survey, Brishane.

Horizon, Upper Triassic, Ipswich, Q.
Genus Polycytella, n.g. (Plate liii., fig. 36.)
Tegmen of rather long, narrow shape, strongly sculptured all over with a meshwork of raised polygonal cellules, somewhat resembling the flattened tubercles of Chiliocycla, but placed more closely together. Only four main veins between the costa and the vena dividens, viz., Sc, R, M and Cu_{1}. These radiate out from near the base of the wing, and run almost straight to the wing-margin, without any branches. Sc very short; R ends up about half-way along the curved costal margin, M near apex, and Cu_{1} well below apex. Cu_{2} (vena dividens) runs straight to a little beyond half-way along posterior margin of wing. Clavus (partially missing) apparently rather narrow, the courses of the anal veins not preserved.

Genotype, Polycytella triassica, n.sp. (Upper Triassic, Ipswich).
Polycytella triassica, n.sp. (Plate liii., fig. 36.)
Total length of fragment, 7.5 mm ., representing a tegmen of about 8.5 mm . in length. The costal margin is not very well preserved, except at the extreme base, where there may also be seen a short, slender vein, probably a much shortened Sc, separated from the costa by a single row of cellules. Between Sc and R there are three rows of cellules, somewhat irregularly arranged. The number of rows of cellules between $\mathrm{R}, \mathrm{M}, \mathrm{Cu}_{1}$ and Cu_{2}, respectively, increases in each case from the base outwards from one or two up to six or seven rows, and the individual cellules become somewhat larger distally. The distal two-fifths of the costa and the whole of the apical margin to a little below the end of Cu_{1} are missing, as is also most of the clavus.

Type, Specimen No. 81a, and paratype No. 154 (poorly preserved), in Coll. Queensland Geol. Survey, Brisbane.

Horizon, Upper Triassic, Ipswich, Q.

Family TROPIDUCHIDAE.

Genus Mesodiphthera Till. (Text-figs. 80, 81.)
Tillyard, Proc. Linn. Soc. N.S.W., xliv., pt. 4, 1919 (1920), p. 873.
The type of this genus is M. grandis Till., represented by the basal half only of a large tegmen about 20 mm . long. Two more specimens referable to this gênus are now to hand, and enable us to add to the definition of the genus the following characters:-Branches of R and M irregularly branched distally; a slightly impressed dividing line crossing the wing transversely from near end of R_{1} to near end of clavus.

Mesodiphthera prosboloides, n.sp. (Text-fig. 80.)
Greatest length of fragment, 14.4 mm ; greatest breadth, 5 mm . The complete tegmen was probably about 15 mm . long.

This species is represented by the greater portion of a fairly large tegmen, exidently of stout build, but not very well preserved. The membrane is creased and cracked in places, making it very difficnlt to follow out the details of the venation, in which there are some very unexpected fusions of branch veins. The

Text-fig. 80.-Mesodiphthera prosboloides, n. sp. Tegmen restored. (x 7.5).
Text-fig. 81.-Mesodiphthera dunstani, n. sp. Tegmen restored. (x 11.6).
structure of the basal half of the tegmen resembles that of M. grandis Till., except that there is an oblique connecting vein between M and Cn_{1}, absent in the genotype, and Cu_{1} is weakly formed and somewhat irregular. The costal area is broad basally, and shaped as in the genotype. R_{1} appears as a short free vein
distally, arising obliquely from R_{2+3}, which is not well preserved. R_{4+5} is considerably branched. M_{1+2} is a strong, straight vein running to near apex, and having no branches. $\mathrm{M}_{{ }_{+}}$gives off three anterior branches distally, and also meets two very oblique branches from Cu_{1}, the main stem of which is short, and ends up not far beyond the end of the clavas. Cu_{2} is a straight furrowvein. Most of the clavus is preserved, with 1A and 2A separate, and shaped much as in the genotype, though 2A is longer. The border of the clavus seems to be somewhat irregular in shape, but is not well preserved, and may have undergone some distortion.

Type, Specimen No. 89a, in Coll. Queensland Geol. Survey, Brisbanc. Horizon, Upper Triassic, Ipswich, Q.

Mesodiphthera dunstani, n.sp. (Text-fig. 81.)
Greatest length of fragment, $10.8 \mathrm{~mm} . ;$ greatest breadth, 3.8 mm . The complete tegmen was probably about 12 mm . long.

This species is complete basally, except for a small portion of the border of the clavus; the apical portion of the tegmen is broken off obliquely, but all the main branchings of the veins are well shown, though a considerable amount of transverse crumpling undergone by the tegmen makes them difficult to follow in places. The species is easily distinguished by the basal bending of M, which arches up so as to touch R , and then bends downwards again until it nearly touches Cu. Also all the distal branchings of R and M tend to turn upwards, and both branches of M are forked. Cu is weakly formed, as in the previous species, but its manner of branching is different.

Family CIXIIDAE.

Genus Mesocixiodes, n.g. (Plate liii., fig. 34; Text-figs. 82-84.)
Allied to Mesocixius Till., and also to Triassocixius Till., but differing from both in having R_{1} unbranched, while R_{2+3} sends a series of veinlets to the costa distally. Costal area very broad. Median cell ($m c$) complete, small, and placed far distally, as in Mesocixius. Cu_{1} with a small distal fork.

Genotype, Mesocixiodes termioneura, n.sp. (Upper Triassic, Ipswich, Q.).

Mesocixiodes termioneura, n.sp. (Plate liii., fig. 34; Text-fig. 82.)
Total length, 12.5 mm .; width at end of clavus, 3.5 mm . The tegmen is complete exeept for the absence of the clavus and a slight break near the apex of the wing; it is finely granulated all over, and is stained a bright orangebrown. R_{1} is a short vein, slightly curved, and somewhat similar to the terminal branches of R_{2+3}, though more strongly formed. R_{2+3} gives off altogether four terminal branches, the first two of which arise close together. R_{2+3} and R_{4+5} are connected distally by a strong cross-vein, and a similar R_{4+5} branches into two distally, the upper branch having a short terminal fork. cross-vein, $r-m$, connects R_{4+5} with the closed median cell below it. M_{1} and M_{2} are sessile upon the median cell (mc), M_{3} and M_{4} shortly stalked from it. A strong cross-vein, $m-c u$, connects the median cell with the short $\mathrm{Cu}_{\mathrm{l}_{\mathrm{a}}}$ below it. There are no cross-veins present in the broad costal area, nor in the spaces between the main veins, except the three distal ones already mentioned, together with $i m$, which closes the median cell.

Type, Specimen $88 a$, in Coll. Queensland Geol. Survey, Brisbane.
Horizon, Upper Triassic, Ipswich, Q.

Mesocixiodes orthoclada, n.sp. (Text-fig. 83.)
Total length, 9 mm .; greatest breadth, 3.2 mm . This specimen is complete, except for partial obliteration of the distal portion. The costal area is broad, as in the genotype, but R_{1} is a much longer vein, running straight out from the main stem of R in an oblique direction to a point about three-fifths of the way

Text-fig. 82.-Mesocixiodes termioneura, n.g. et sp. Tegmen. (see Plate liii., fig. 34.) (x 6.7).
Text-fig. 83.-Mesocixiodes orthoclada, n.g. et sp. Tegmen. (x 8).
Text-fig. 84.-Mesocixiodes brachyclada, n.g. et sp. Fragment of tegmen. (x 5).
along the costa, and thus making the costal area very pointed distally. Four evenly-spaced branches of R_{2+3} are present, and this vein leaves the main stem of R very close to R_{4+5}. M does not appear to be connected with Cu_{1} basally, and its distal branches are very indistinct, though the median cell appears to be an elongated cell enclosed between only two main branches. The distal forking of Cu_{1} is much longer than in the genotype. Clavus complete, with 1 A running below and close to Cu 2 and very slightly waved; 2A a small loop across the anal angle.

Type, Specimen No. 318a, in Coll. Queensland Geol. Survey, Brisbane.
Horizon, Upper Triassic, Ipswich, Q.
In the absence of any definite evidence as to the true form of the median cell, it seems best to keep this species in the genus Mesocixiodes, with which it agrees in its other characters. The species is easily distinguished by the striking form of R_{1}, which has snggested the specific name orthoclada.
Mesocixiodes brachyclada, n.sp. (Text-fig. 84.)

This species is represented only by the distal half of a left tegmen of about the same size as that of the previous species, having the four distal branches of
$\mathrm{R}_{2_{+3}}$ similarly situated, but the first of them much eloser to R_{1}, which is a short vein like that in the genotype, but quite straight. The end branch of R_{2+3} is gently curved, and is joined to an anterior branch of R_{4+5} by two short cross-veins. $\mathrm{R}_{2_{+3}}$ and R_{4+5} come off far apart, as in the genotype. Branches of M and Cu_{1} obliterated; Cu_{2} apparently a rather stout vein. Length of fragment, 9.5 mm .

Type, Specimen No. $325 a$ in Coll. Queensland Geol. Survey, Brisbane. Specimen No. 4, figured by me in 1916 (l.c., Plate 1, fig. 5) as doubtfully belonging to Mesorthopteron locustoides Till., belongs to this species also, but the venation is very poorly preserved.

Horizon, Upper Triassic, Ipswich, Q.

Family IPSVICIIDAE.

Genus Ipsviciopsis, n.g. (Plate liii., fig. 35; Text-figs. 85, 86.)
Closely allied to Ipsvicia Till. from the same horizon, but differing from it in having an anterior branch of R present, which I have labelled R_{1} in the figures, though it may perhaps represent R_{2+3} with R_{1} suppressed. The tegmen is also of more normal shape, with a less acute apex and much less prominent anal angle of the clavus. Distally R and M are irregularly branched. Cu_{1} is curved as in Ipsvicia, but runs much closer to Cus. The claval Y-vein is present, but its stem and the distal portion of its posterior arm (2A) are scarcely removed at all from the border of the wing. There are no patches of raised tubercles present, but the tegmen is finely and evenly granulated all over.

Genotype, Ipsviciopsis elegans, n.sp. (Upper Triassic, Ipswich, Q.).
Ipsviciopsis elegans, n.sp. (Plate liii., fig. 35; Text-fig. 85.)
Total length, 12.5 mm .; greatest breadth, 3.8 mm . The specimen is a practically complete left tegmen, obverse impression, which has been turned round in Text-fig. 85, so as to bring the apex to the right. A small piece at the base of the costa has become somewhat detached from the rest of the wing, as may be seen in Plate liii., fig. 35, but has been replaced in Text-fig. 85. There is also some slight abrasion of the angle of the clavus. Rs and M are connected distally by three cross-veins, enclosing between them two elongated polygonal cells; above these is another cell formed by the branching of Rs distally, and closed by another cross-vein. Small branches from Rs and M form a series of irregular and mostly very small cells along the apical margin. $\mathrm{M}_{3_{+4}}$ unites with Cu_{1}, which is unbranched, thus leaving a large open space below $\mathrm{M}_{1_{+}}$. The whole tegmen is stained a rich orange-brown.

The above description applies to Specimen No. 178a, which is the type. Specimen No. $278 a$ is another practically complete tegmen of this same species. It is the obverse of a right tegmen, complete except for an oblique depression in the rock, which runs across the distal portion of the wing, and has caused some abrasion in the depressed portion. The venation is almost exactly the same as in the type, there being only some slight differences in the size and position of the distal cells.

Types, Holotype, Specimen No. 178a; paratype, Specimen No. ${ }^{278}$. Both in Coll. Queensland Geol. Survey, Brisbane.

Horizon, Upper Triassic, Ipswich, Q.

Ipsviciopsis magna, n.sp. (Text-fig. 86.)
This species is represented by a fragment of a right tegmen, reverse impression, measuring 10 mm . in length, and obviously belonging to a large tegmen, probably about 26 mm . in total length. It is very much cracked and

Text-fig. 85.-Ipsviciopsis elegans, n.g. et sp. Type tegmen restored, with apex to right. (see Plate liii., fig. 35.) (x 7.9).
Text-fig. 86.-Ipsviciopsis magna, n.g. et sp. Fragment of tegmen. (x 6).
broken transversely, possibly owing to its toughness and may have been cracked under pressure. It differs markedly from the previous species in possessing a series of transverse veinlets running from R s across R_{1} to the costa. R_{1} ends up on the fourth of these, whicb is joined near the costa by the fifth, these two arising one on each side of the strong cross-vein connecting Rs with M. A sixth veinlet is sbown distally from Rs to the costal margin. R is also connected more basally with M by a sbort eross-vein, absent in the previons species; and a small cross-vein, obliquely placed, connects Cu_{1} with Cu at about the same level. Clavus and distal portion of the wing missing, as well as the extreme base.

Type, Specimen No. $93 a$, in Coll. Queensland Geol. Survey, Brisbane.
Horizon, Upper Triassie, Ipswich, Q.

Suborder Heteroptera.

Division GYMNOCERATA.

Family DUNSTANIIDAE.

Speeimen 119a is a hemelytron belonging to this family, probably to Dunstaniopsis triassica Till., but not well enough preserved for accurate determination. The greater portion of the corium is visible, with the stems and branches of M and Cu , but all the margins are destroyed. The clavus and membrane are mostly obliterated.

Division CRYPTOCERATA.

Family TRIASSOCORIDAE, n.fam.

Insects resembling the Naucoridae and Galgulidae in the form of the hemelytron, which is broad, with a strongly projecting clavus reaching half-way or less along the posterior margin, and strongly angulated. Tegmen smooth, dark and shiny, as in Nancoridae, and not tough or marked with paler patches as in Galgulidae; the main veins R, M and Cu_{1} are still visible on the corium, which extends over the greater portion of the hemelytron and is separated from the narrow distal membrane by a definitely impressed line, more or less concentric with the wing-border. In the region of the membrane above the apex, R and M give off a series of radiating branches which cross the membrane at close and regular intervals; most of these are only faintly outlined. These characters agree with those of the Belostomatidae of the present day, from which the fossil family is distinguished by its much smaller size and different shape. It would appear to be ancestral to the three families Galgulidae, Nancoridae and Belostomatidae, and perhaps to all the rest of the Cryptocerata also.

Genus Triassocoris, n.g. (Text-figs. 87, 88.)
Hemelytron short, broad, quite smooth in texture, shiny and also very darkly coloured. Venation mostly very faintly marked, only three main veins apparent on the corium, viz., R, M and $\mathrm{Cu}_{1} . \mathrm{R}$ and M are fused basally for some distance. R runs about parallel with the costal margin, a considerable distance from it; about one-third from base, it gives off a faint oblique veinlet, which is probably the first of the series of radiating veinlets continued around the apex, but mostly too weakly formed to be made out with certainty. M and Cu_{1} both very faint, becoming irregular distally, and breaking up into small branchlets, most of which are too faint to be indicated accurately in the figure. Below Cu_{1} there is an appearance of a very faint, irregular, polygonal meshwork; this is more clearly marked in specimen $167 b$ than it is in specimen 140. The division between corium and membrane distally is indicated by a curved line running round from the end of R concentrically with the rounded apical margin. In the region of the apex, especially above it, a series of radiating veinlets can be seen crossing the membrane; they are clearly branches of R and M which cross the concentric line above mentioned. Clavus short and broad, strongly angulated, and ending up abont half-way along the posterior margin of the wing, with which it makes a very marked angle. The position of the two hemelytra on the back of the insect when at rest is shown in Text-fig. 88, the shaded portions being the two clavi.

Genotype, Triassocoris myersi, n.sp. (Upper Triassic, Ipswich).
Triassocoris myersi, n.sp. (Text-figs. 87. 88.)
Total length, 5.8 mm. ; greatest breadth, 2.5 mm . Hemelytron broad and well rounded apically; the corium and membrane quite smooth, apparently shiny in life, and probably of a very dark colour, since specimen 140 is very much darker than the rock on which it lies, but is clearly not carbonised. The venation of the corium is very faint, but the courses of M and Cu_{1} upon it can just be made out in a strong oblique light, as well as a small portion of the polygonal meshwork, in specimen 140; in specimen $167 b$, this meshwork is more clearly marked, and very irregular in form.

This species is dedicated to my friend Mr. J. G. Myers, F.E.S., Assistant Entomologist, Biological Laboratory, Wellington, N.Z., who is doing exeellent work on New Zealand Hemiptera.

Text-fig. 87.-Triassocoris myersi, n.g. et sp. Tegmen. (x 9.6).
Text-fig. 88.-Triassocoris myersi, n.g. et sp. The two tegmina placed in the position of rest. (x 9.6).

Types, Speeimen $140 a$ (corium and membrane) and $167 b$ (clavus), in Coll. Queensland Geol. Survey, Brisbane.

Horizon, Upper Triassic, Ipswich, Q.

Triassocoris scutulum, n.sp.

Specimen No. 134 contains two impressions of different inseets, one being a portion of the tegmen of a Cockroach belonging to the genus Samaroblatta Till., not sufficiently well preserved to merit a name, and the other the two hemelytra of a species of Triassocoris folded over in the position of rest, as shown in Text-fig. 88, which was reconstructed from the previous species. The present speeies differs from the genotype in having the hemelytra much less rounded apically; so that, when folded in the position of rest, their appearance is more pointed apically, the figure being shield-shaped. Besides this, it can be seen that the course of R and the dividing vein which continues it between corium and membrane does not run concentrically with the margin but begins at the base comparatively close to the costa, and gradually diverges from it towards the apex. The hemelytra are irregularly broken off basally, but most of the two clavi can be seen in situ; the venation is practically obliterated.

Type, Specimen No. 134 in Coll. Queensland Geol. Survey, Brisbane.
Horizon, Upper Triassic, Ipswich, Q.
Specimen No. $184 b$ also appears to belong to this genus, but is too poorly preserved for description.

Order NEUROPTERA.
 Suborder Planipennia,
 Family PSYCHOPSIDAE.

Genus Triassopsychops, n.g. (Plate lii., fig. 32; Text-fig. 89.)
Forewing very broad, the apex rounded, but less so than in most recent Psyehopsidae, the tornus broadly rounded. Se, R_{1} and Rs very strongly built
from base to a little beyond half-way, forming a true vena triplica, characteristic of this family, and joined distally by two strong cross-veins; beyond this point, these three veins continue a short distance, when they are again connected by two cross-veins; at this point, Sc divides into terminal veinlets; R_{1} and Rs_{s} continue a little further, when they are again connected by a cross-vein, after which Rs divides into terminal veinlets; R_{1} divides into such between the second and third cross-veins. Of the three veins forming the vena triplica, Sc is much the strongest, R_{1} the weakest. Costal area broad, a little broader than the area covered by Cu and the anal veins, but not so broad as in recent forms; a recurrent veinlet present at its hase, sending a number of branches to the margin; the succeeding costal veinlets lie close together, mostly arising from Sc at an angle of about 45°, mostly branched, and connected here and there by small cross-veins, which show no tendency to become arranged into a costal series of gradate cross-veins, such as occurs in many recent forms. Apical area missing in the fossil, but its extent can be inferred from the length of the pectinate branches of Rs, some of which are preserved right to the margin of the wing; the actual shape of the apex can also be inferred from the comparative width of the costal margin and slant of the costal veinlets. Rs with about fourteen branches descending from the vena triplica, some branched and some simple within the area of the dise, hut all branching closely towards the distal margin of the wing. M apparently with five branches within the area of the dise, and connected with the lowest branch of Rs by a strong oblique cross-vein. No fusion of M with Cu_{1} distally. Cu_{1} strongly formed, remaining unbranched for about three-fifths of its length, and then giving off numerous branches to the area of the tornus. Cu2 a weakly-formed vein lying closely parallel below Cu1, giving off a series of branches from about half-way, and bending strongly down distally below the point where Cu_{1} gives off its first branch. 1 A and 2 A slightly arched veins branching longitudinally; 3A not present as a vein distinct from 2A basally. Posterior margin of the wing not strongly arched outwards at base. Cross-veins present in the vena triplica, strongly formed, spaced irregularly at fairly wide intervals. Numerous weak cross-veins present in the disc, especially in the basal half and between the branches of M almost to the distal margin; there are also weak cross-veins present between most of the outer branches of Rs at about two-thirds of the wing-length from the base; these show a tendency to arrangement as a true gradate series separating the disc from the marginal area; the latter is practically devoid of cross-veins, the cubitoanal area completely so.

Genotype, Triassopsychops superba, n.sp. (Upper Triassic, Ipswich, Q.).

This genus differs from Archepsychops Till. in its less expanded costal area, in having R_{1} and Rs separate right from the hase, and not curved downwards markedly away from Sc, and also in having Cu_{1} straight at the base, not arching sharply downwards, and making a smaller angle of divergence with Sc than in Archepsychops. This latter genus was placed by me, with Protopsychopsis, in the family Prohemerobiidae; but it seems probable, on the evidence offered by the new fossil, that it too would possess a true vena triplica of the Psychopsid type, and should therefore be placed within the family Psychopsidae. Protopsychopsis on the other hand must remain in the Prohemerobidae, since the form of its apical area shows that a true vena triplica was not present.

The discovery of this magnificent fossil, complete in all the more important details of venation, enables us to state definitely that true Psychopsidae were
present in the Upper Triassic fauna of Ipswich. The more primitive condition of the fossil wing, compared with recent forms, and especially noticeable in the less ronnded apex, less expanded costal area, and absence of any definite or complete gradate series of cross-veins, makes it necessary to place Triassopsychops by itself in a new subfamily Triassopsychopinae, which may possibly also include the genus Archepsychops, when more of the venation of that genus is made known.

Trlassopsychops superba, n.sp. (Plate lii., fig. 32; Text-fig. 89.)

Greatest length of fragment (obliquely along lower branches of Rs), 29 mm ., representing a total length of 32 mm . Greatest breadth of fragment, 22 mm ., representing a true greatest breadth of the complete wing, near tornus, of about 23.5 mm . The fossil is beantifully preserved, but the apical portion of the wing

Text-fig. $89-$ Triassopsychops superba, n.g. et sp. Restoration of forewing. (see Plate lii., fig. 32.) (x 3).
is missing, and there are also irregular breaks along the costal and posterior margins. The more important details of venation have been included in the generic definition; the lesser details of the branching of the veins may be gathered from Plate lii., fig. 32. Text-fig. 89 shows a restoration of the complete wing, based on the photograph shown in the Plate.

Type, Specimen No. 284a, in Coll. Qneensland Geol. Survey, Brisbane.
Horizon, Upper Triassic, Ipswich, Q.

Order COLEOPTERA.

The numerous specimens belonging to this Order, chiefly separate elytra, but some few showing the body of the insect with the wings in situ, are heing worked up by Mr. Dunstan, and will be dealt with in a separate part. There is, however, one specimen of great interest which may be dealt with here, since
it does not require a name. It is Specimen No. 170 , which shows the stem of a plant in which there can be plainly seen the mine or burrow of an insect larva. The type of burrow is clearly Coleopterous, and the larva probably belonged to one of the obscure families of very small beetles, the burrow being far too small to be that of a Cerambyeid. It is shown in Plate li., fig. 29.

EXPLANATION OF PLATES LI.-LIII.

Plate ii.
Fig. 26.-Mesorthopleron locustoides Till. Forewing, specimen No. 258b. (x 5).
Fig. 27 -Triassomantis pygmaens, n.g. et sp. Forewing. (x 10.5).
Fig. 28. - Triassolocusta leptoptera, n.g. et sp. Forewing. (x 5.1).
Fig. 29.-Burrow of Coleopterous larva in stem of plant. (x 6.2).
Plate lii.
Fig. 30.-Mesophlebia antinodalis Till. Heautotype. (x 4).
Fig. 31.-Triassagrion australiense, n.g. et sp. (x4).
Fig. 32.-Triassopsychops superba, n.g et sp. (x 4.2).
Plate liii.
Fig. 33.-Apheloscyta mesocainpta, n.g. et sp. Tegmen. (x 8.85).
Fig. 34.-Mesocixiodes termioneura, n.g. et sp. Tegmen. (x 7.6).
Fig. 35.-Ipsviciopsis elegans, n.g. et sp. Tegmen. (x 7.5).
Fig. 36.-Polycytelta triassica, n.g. et sp. Tegmen. (x 11).
Fig. 37.-Chiliocycla scolopoides Till. Tegmen. Type. (x 10).
(N.B.-The numbers of the figures run concurrently with those of the previous Part).

